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Questions of the optimal design of anisotropic inhomogeneous bodies under dif- 
ferent optimality conditions are considered. The domain occupied by the body 

and the conditions on its boundaries are considered given; the structural para- 

meters characterizing the material properties are functions of the coordinates. 
An existence theorem is proved, as are certain properties of the considered 

designs. 

1, An inhomogeneous anisotropic continuous medium characterized by some structu- 
ral parameters which are functions of the space coordinates, is considered. The medium 

is a model of real materials of the type of a metal bonded by high-strength monocrystals, 

fiberglass, etc. ; the physical meaning of the structural parameters can be elucidated by 
turning to specific composites. 

Let us say that the body configuration is given if a volume li filled with a continuous 
medium and the conditions on its boundary surface B are defined. The surface stress 
resultants are given to the accuracy of some general parameter t (the proportional load- 

ing), there are no mass forces, and the possibility of buckling is excluded. The functional 
relationships connecting the stresses, strains, and structural parameters are called the law 

of the medium. 
The body design will be considered constructed if the functions governing the structu- 

ral parameters of the medium have been selected in such a manner that the strength con- 

ditions at each point, the equilibrium equations, the strain compatibility conditions, and 

the boundary conditions are satisfied. Appropriate equalities on the surfaces of disconti- 

nuity should be satisfied for discontinuous fields. 

The problem of designing minimum-weight components (mass, cost of material) results 
in a typical variational calculus problem, to seek the extremum of the functional which 

is an additive function of the domains. Known methods of solving such a problem rely 
essentially on this additivity property. 

For a given configuration and law of the medium, the body strength (the global strength) 
is determined by the maximum value of the loading parameter t which we denote by 
p (p = mar t). The quantity p depends on the selection of functions governing the struc- 
tural parameters, i.e. is a functional. This functional is not additive since it has no mean- 
ing for part of the volume v. The problem can be posed of seekmg the maximum of the 
functional as the structural parameters are varied: p* = max p. Another example of 
an extremal problem for a nonadditive functional is obtained in constructing a body hav- 
ing the least displacement at a certain point. 

Let us consider continuous media which simulate a structurally-anisotropic inhomoge- 
neous material consisting of a binder and a filler (armature) imbedded therein. Let p and 
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p. be the armature and binder densities, s is the content by volume of the armature per 
unit volume of composite, u is the total volume of the armature in the body. Then 
v- v and i - s are the total and relative volumes of the binder, (p - po)s -I- p. is 

the mean density of the composite. For given constant p, p,,, V the armature mass m 

completely determines the mass of the whole body M 

M=Pv-!-Po(V--)=(P--po)m/p+poV (m=p 1 sav) 
V 

For P > PO the problem of minimizing the mass of the body reduces to minimizing the 
mass of the armature. All the quantities introduced correspond to the initial unstrained 

state of the body ; the values for the state of strain will be provided with primes. 
Let us examine three optimality criteria for which the following optimal design defi- 

nitions are taken. 
1. An equal-strength (more accurately, equal-strain) design having relative elong- 

ations constant over the volume and mutually equal in some three noncoplanar directions 

for any running value of the external load parameter t : cl = Ed = E, = E (t), so that 

for an ultimately loaded body (t = p) 

E, = E2 = Eg = 8 (p) = f &* (1) 

Here e* is a material constant, 1 8i 1 < E* 1s a local strength condition (i = 1,2,3). 

2. The design of least armature mass for a given strength P : nh* = min m (P = 

const). 

3. The design of maximum strength for a given value of the armature mass m : 

P * = maxp (m = const). 
Two characteristic parameters are contained in these definitions: m and p; it is de- 

sirable that the design, which is optimal in one of the parameters, should be satisfied in 

the other. If necessary, some combination of these quantities can be introduced, and an- 
other definition of an optimal design can be considered. 

The purpose herein is to clarify the interrelation between the properties of designs 
with identical configuration, constructed according to different criteria and having a 
different internal structure. 

Assumptions about the law of the medium will be made as necessary in order that each 

assertion expressed should be valid for the whole succeeding exposition. The first such 

assumption is: When a body element is in the state of uniform, multilateral expansion 
(compression), its behavior is linearly elastic, where the relationship between the first 
invariant of the stress tensor U, the linear strain E and the filler content is determined 

by the equality 
(r = [as + b (1 - S)]E (a, b = const) (2) 

Theorem 1. For a given body configuration and strength, all designs which are 

optimal according to criterion 1 , and with identical material constants 3, b, E* have 
the same mass. 

A substantial coordinate system gk (k = 1,2,3) is introduced for the proof, in which 
the stress and strain tensor components are denoted by plj and Eij, respectively, and the 
metric tensor components in the initial and running positions by gij and gij’* The rela- 
tion between the coordinate vectors Bkr 3,’ the systems in the initial and running states, 

is written as 3,’ = (1 + E)Qb, (gi{ = (1 + ~)~g+ aV’ = (1 + e)gaV) according to crite- 

rion 1. Hence o = piigij’r and the increment in the strain tensor component during the 
process of deformation can be written [l] 
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il& dEij = @.5rE (3~‘3j’ - 3i”j) = (1 -t &) gijdE == 6ij’ 
(I+&) 

The work of the internal stress resultants during body strain from the initial (:: -5 0. 
t = 01 state to the terminal state (E = a*, t = P) is 

Here CJ (E*)- is a’function obtained as a result of integration. (Henceforth, summation 

is not carried out over the repeated subscripts). 
The deformation of such a design can be considered as a uniform expansion (or com- 

pression) relative to some fixed center, hence, the displacement vector of any point can 

be expressed in terms of the radius-vector of its initial position: U = or, then dU = rde 
is the increment in the displacement vector during the process of deformation. Writing 

the intensity of the external surface forces as tf (&, &, ES) we obtain an expression for 
the increment in the work of the external.forces on a surface element dA = t (f, r)dEd@ 

(dQ’ = (1 + &)2dS2). Using the assumption on linear elasticity of the material under mul- 

tilateral expansion (compression), we find that E = &+t / p. 
Indeed, the boundary surface changes similarly as the parameter t grows, and the bound- 

ary stresses vary in proportion to t. If the solution of the problem exists fort =1 and de- 

fines the stress field p’j (I), thep for any t a solution with the field tpij (1) exists. The exclusion 
of the possibility of buckling assumes uniqueness of the solution. Therefore, for some 
fixed design undergoing the mentioned strain, the stress tensor and its first invariant o 
vary in proportion to the external loading parameter t. Using the relation (a), we arrive 
at the dependence written down for the strain. 

The work of the external forces is n 

Equating the work of the external and internal forces, we determine the filler volume 

L‘ = [A - 61.0 (E*)] / (a - b) 4, (&*) (3 

Functions dependent on the material constants a, 6, E*, the body configuration, and 
the design strength p enter into the right side of (3). However, the filler volume is inde- 

pendent of any characteristics of the filler distribution over the volume 1,. Any designs 

of this configuration, with the strength p and constructed from a given material, will have 

the same filler volume. Considering the density p constant, and using the expression 

written earlier for the mass of the design M, we easily see the validity of the remark 

expressed. 

2. The further exposition refers to materials whose filler is thin oriented fibers. Let 

us imagine some three-dimensional curvilinear coordinate system Ei with the coordinate 

vectors ,E$ , and let us consider the fibers of the composite being simulated to be parallel 

to the coordinate lines of this system. 

The volume content of fibers in the i th direction per unit volume of composite will 

be denoted by Si, then s = s1 + s, -t sQ. The quantity s should not exceed the ultimate 

admissible value $* < 1, determined from the technological considerations. It can be 
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assumed that ss = 0 for plates and shells produced from such a material. 
Assuming the transverse dimension of the fibers arbitrarily small, let us make the tran- 

sition, customary in solid mechanics, to a continuous, inhomogeneous, anisotropic medium, 
whose structural parameters sl, s,, sa are functions of the coordinates &, &, &. By 

definition, the system ci is substantial. 
bet us examine only rational c23 designs which, by definition, possess the following 

properties : 
a) The stress vector pi on an area formed by the coordinate vectors &‘, 33’ is col- 

linear to the vector &‘; an analogous assumption is made relative to the stress vectors 

in the other coordinate areas with a circular permutation of the subscripts ; 
b) The angles between the coordinate axes of the system J$ coupled to the fiber 

directions are conserved during deformation. 

In substance, the assumptions (a) and (b) reduce to the fact that neither shear stress 
resultants nor shear strains originate between fibers of one family. In this connection, 
there is no need to determine specifically the relation between these state characteris- 

tics in the law of the medium and the strength conditions. The number of governing 

parameters is thereby cut down substantially ; for instance, the body strain at a point is 

characterized only by the relative fiber elongations el, Ed, Q. 
It is assumed that the binder stiffness is adequate to conserve the composite monolithic 

and to eliminate the possibility of fiber buckling. Besides the invariant strain character- 
istics &i , invariant quantities governing the state of stress oi (i = 1,2,3)’ are also intro- 
duced, which can be called the reduced stresses on the coordinate areas. 

Let us use the notation pl = 1 pi 1 and ci , the angle between the covariant vector + 
and the contravariant vector of the same system 3’i. Evidently the angle between the 
coordinate area LZr2’ 3,’ and its projection on a plane orthogonal to the direction aI’ 

equals al. By assumption, let ui = pi/cosai (i = 1,2,3), then in particular, o1 is the stress 
resultant on some area formed by the fiber directions Et. Ez referred to the area of the 

projection of this area on a plane normal to the direction of the stress resultant. 
Using the formulas of Sect. 4 in [l] with a certain difference in the notation, we can 

write 

then oi = ~&‘ii’ (no summation), and the first invariant of the stress tensor u is repre- 
sented as u = u1 + a, + u3. The quantities ui are the principal stresses for an orthogo- 

nal coordinate system & since by virtue of the assumption of rationality of the designs, 

the principal axes of the stress tensor will coincide with the fiber directions. Hence 

ii 
bi=P 7 &i = VI + 2Eii / gii - 1 

Let the relationship between the invariant stress and strain characteristics oit ei and the 
structural parameters Si, ai (the lgw of the medium) be defined by the equalities 

/k (a,. u,. 0,; +, ep, es; s,, s,, s,; a,, az, a,) = 0 (k = 1,2.3) (4) 

The Iollowing condition is imposed on the function (4): For bounded values of the vari- 
ables oi, ai, ai satisfying the inequalities UiEi >, 0 and 0 < ai 5 n they implicitly 
determine single-valued bounded positive functions s,,(n,, 02, (TV; e,, e,, fg: CL,, a,, a& 
such that 

Ciigu Ui)LlS, / ?lUi > h > 0 (h = coll~t) 

The strength condition of the body at a point is 1 Ei ( < c* (i = 1,Z.S). 
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Let us call a stress field regular if it is statically admissible for a given body configu- 
ration, and its isostats (lines of principal stresses) can be taken as the coordinate lines of 
some curvilinear coordinate system ei. 

Theorem 2. If multilateral uniform expansion (compression) does not contradict 
the kinematic conditions for a given body configuration, then any regular stress field poki 
with principal stresses of the same sign will generate an optimal design according -to the 
criterion 1 . 

Indeed, the stress field of the desired design can be selected as PLi=tpokj. The prin- 
cipal lines of stress of this field determines a coordinate system & giving the directions 
of the armature fibers, then because of the orthogonality of the principal axes of the stress 

tensor a, = a2 = a3 = 0. Assuming &I = E, = Ed = k E*, we find Sir s,, sQ from the 

law of the medium (4) as functions of the principal stresses ‘Jo. ~2, 03. 

While t is not fixed, we have a family of equal-strength designs. As the parameter t 

increases, the principal stresses grow from the zero value, and therefore (see (5) ), the 
bonding intensities should increase also. Assuming the greatest value of the total bond- 
ing intensity to reach s*, we obtain an equality to determine the strength of the strong- 
est design from a given family maxv f s = s*. Here p is the value of t at which this 

maximum is reached. 
In particular, Theorem 2 permits the elementary design of equal-strength membrane 

shells if the stress fields of the corresponding isotropic shells with principal stresses of the 

same sign are known. 
Henceforth, the body displacements are considered small so that no difference between 

the states of the boundary surface before and after loading can be noticed. 
Theorem 3. The solution of the elasticity theory problem of an isotropic body 

with regular stress field determines the rational design of an anisotropic body of the same 

configuration. 
In an isotropic body with Poisson’s ratio Y’ = 0 and still undetermined value of the 

Young modulus E’ , let a stress field ui (t) = tcTi” and a strain field &i” be realized for a 
value of the loading parameter t SUCII t[laL max { 1 e1 1, 1 c2 i, I c3 I} = E*. ‘1’0 construct the design 

of an anisotropic body let us select its stress and stram fields such that they would equal, 
respectively, in the ultimate loaded state ui (p), Ei” (p is the greatest value of the load- 
ing parameter of an anisotropic design). By virtue of Hooke’s law for an isotropic body, 
we can write ui (p) = E’EiO, then we find the function si (E’Ei“, E’i) (Cti = 0) from (4). 

Coaxiality of the stress and strain tensors of an elastic isotropic body assures-absenc,e of 
shear stress resultants and shear strains on the coordinate areas of the system & if it is 
selected so that the coordinate lines (and the armature fibers) coincide with the isostat 
lines. 

For values of E’ for which s < 9, we have a family of rational designs. Selecting 
the strongest, we assume maxV, E, s = s*, from which we find the value E’ = Eo’ at 
which this maximum is realized. The strength is determined from the condition that the 
stresses in isotropic and anisotropic bodies are equal p = E,‘EilOi”. The proof can be 
carried out analogously for Y’ # 0. 

As a rule, Theorem 3 yields a good initial approximation, and by starting from it the 
design can be improved and its characteristics brought to the optimal by some kind of 
criterion. 

This last exposition refers just to rational designs with two families of armature direc- 
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tions parallel to some plane Q. The middle plane of the body occupies a domain o on 
C, bounded by the contour L. The external stress resultants acting on the contour are 
parallel to the plane Q. The height of the body is assumed to equal unity. 

For the law of the medium (4) (sg = 0) under the condition (1) and the additional 

condition sign Eiask I a&i < fL <_O (p = const) 

the following theorem is valid. 
Theorem 4. For a given body configuration and strength, a design which is opti- 

mal according to criterion 1 is also optimal according to criterion 2, or differently, an 

equal-strength design has the least mass. 
The proof of this theorem, presented in [2] (Remark 3) for the simplest law of a medi- 

um, is extended to this case without difficulty. 

3, Let us examine the properties of plane rational designs for the simplest law of a 
medium. Henceforth, the binder stiffness is considered to be so much less than the arma- 
ture stiffness that its contribution to the total stiffness can be neglected. 

The law of the medium hence has the form 

ci = ESiEi (i = 1,2) (7) 

Theorem 5. Each rational design (tn, p) generates a family of rational designs 

with proportionately lower values of the armature mass and the strength (Pm, PP). 
Indeed, by having a design characterized by the quantities m”, pi’, ~9 (El, &J, 

ei” (El, Et), si” (51, E;), aio (&, Es),. a new design with the same strain field si (41, 42) = 
si” (E;i, &J and proportionately diminished fields of stress ui (Et, l&) = Pai” (Ei, &) and 
bonding intensity si (&. &) = Psi” (F,i, .&) can be constructed. By virtue of their llnear- 

ity the equilibrium equations are not violated, the equalities (7) are conserved, the bound- 
ary conditions for the stresses will also be satisfied if the parameter p is replaced by pp. 

The mass of the armature of such a design will equal pm. 

Theorem 6. For a fixed value of the armature mass m,, , the design (m,, p,,) 

which is optimal according to criterion 1, is optimal according to criterion 3, or differ- 
ently, an equal-strength design has the greatest strength for a given mass. 

Let us assume the opposite: There exists a design (mo, p) with the same mass and 
greater value of the strength than the equal-strength P > po. In conformity with Theo- 

rem 5, this design can be used to construct a new design with proportionately diminished 
values of the mass and strength. Namely, by taking p = pnl p, we obtain the design 

(pm,,, p,J. However, in conformity with Theorem 4, such a design does not exist (with 
the same strength as the equal-strength design, but lesser mass). 

An imaginary plane with rectangular Cartesian coordinates m, p (Fig. 1) can be in- 
troduced for a graphic comparison of the properties of diverse designs. Picturing each 
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design by a point on this plane, we can obtain 

ZPR some geometric type results from the assertions 
expressed. 

R 
PR 

Corollary 1. If there exists an equal- 
strength design N (m,, po) (see Fig. l), then a 

b’ a 

In 

mP 
segment of the line ON corresponds to designs 

b which are optimal by all three criteria. 

Fig. 1 This assertion evidently follows from Theorems 
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4 - 6 since an equal-strength design generates equal-strength designs. 
Besides the quantities m and P , their ratio p / m , the specific strength of the project, 

can be considered. All rile points on ON correspond to designs of identical specific 
strength. Applying the reasoning in the proof of Theorem 5, by taking 1~ > 1 I an attempt 
can be made to construct a design with the same specific strengt:, but with a greater 
value of the strength p ; however, this is possible only when the ultimate bonding inten- 

sity s* is not reached at any point of the design fi. 

Considering this possibility to have already been exhausted in the design it , i.e. p 

to be SD great that the equality s == S* has been satisfied at some point of the body, 
then the following can be formulated. 

Corollary 2. The imaginary points of all possible designs are arranged either on 

the segment ON or below a ray corresponding to this segment. 
The absence of points above this ray evidently follows from Theorem 5 and Corollary 

1. 
According to Corollary 1, the segment O,V can be called a section of the optimal 

design curve. If it is impossible to construct an equal-strength design, then such a curve 
should correspond to designs, optimal according to Criteria 2 and 3. 

From Theorem 5 results - 

Corollary 3. The optimal design curve cannot intersect the radius-vector of any 
of its points twice, i.e. its behavior, pictured by the section KM in Fig. la is impossible. 

As an illustration, let us consider an annular plate loaded in its plane by a uniform 

pressure t along the outer contour. There was no body thickness for the computations 
since the stresses are given on the boundary. It can be considered that a layer of unit 

thickness is designed. Let r,,, rl. r denote the internal, external, and running radii of 

the plate. 

According to the known Lame. formulas, the stress field 

originates in an elastic isotropic ring under an external pressure t . The lines of prin- 
cipal stresses are arranged in radial and circumferential directions, which correspond to 
the subscripts 1 and 2. 

Assuming the Poisson ratio zero, let us find the deformation of an isotropic body from 
the formula Ei = ui / E’. Let the strains and stresses of the desired rational design agree 

with the corresponding quantities for an isotropic body. From the law (7) we find the 
bonding intensity s1 = s2 = E:’ / E. L e us select E’ so that the total bonding intensity t 
reaches its greatest value: s = 2E’ I E = s*, B’ = ES* i’ 2. By virtue of the constancy 
of s over the whole domain (0 , the armature mass will also equal its greatest possible 
value for a body of given configuration mR = m* = POS*. The absolute values of the 
principal strains are bounded by the quantity E*, and since the principal stresses are 
proportional to them, we can write (by putting t equal to the greatest value of pl 

The domain o for the considered body is defined by the inequalities r. < r < r-1 and 
the circumferential stress z2 reaches the greatest value for r = I’U 
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max { 1 ~1’ 1, ( ~2’ 18 = 279 / (r? - r0*) 

roQr<t, 

so that it follows from (9) that 

p = Es*E* (rlZ - ro*) l&2 G pR (10) 

Thus, the bonding directions are selected along the radius and along concentric circles, 
the bonding intensities are constant: si = s* / 2, the strength of the design equals pR, 

the stresses are determined by means of (8) for t = pn, the strains are ei = 2qlEs*. 

The rational design has been constructed. 
Since a regular field of stresses (8) satisfies the condition olop > 0, it can be taken 

as the stress field of an equal-strength design. Following the procedure elucidated in the 
proof of Theorem ‘2, let us set ei = s2 =I - E* the si = 1 ui 1 / EE* from (7) and 

s* lye s = 7~ (I 61 I+ 1 52 I) / EE* (11) 

or differently 

p msx (1 cri I + I ~2 I) = Es*&* (12) 

The stress field under considerayion (8) possessed the remarkable property that the sum 
of its principal stresses is constant, and the equalities (ll), (12) are 

S* = 1 61 + CT2 1 / ffE*, p 1 51’ + ~2’ I = Es*E* 

so that it turns out that for an equal-strength design 

p = Es*E* (r12 - roa\ / 2rla G po = 2p,, rno= m* 

On the image plane (m, p) (Fig. lb), the point R (mRpR) corresponds to a rational 

design, the point N (m 0, PO) to an equal-strength design, and the segment ON is the 

optimal design curve. Since the mass of any design of this configuration cannot exceed 
m*, no points exist above N , i.e. the equal-strength design constructed is absolutely 

optimal in strength: p. = p*. 
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